

Town of Annapolis Royal

Flood Adaptation and Asset Management

November 23, 2023

Facilitators

Matt Delorme, P. Eng AIM Network

Joy Elliott, CSLA Landscape Architect

PROJECT SCOPE

- Review comments from Phase 1
- Update Concept Design
- Revise Costing
- Assess Capital Financing
- Prepare report to support funding application for future work

AIM Network

What's the Risk?

Table 4-2 Peak Water Elevations

RCP		Year	100 yr. Flood Elevation (m)	Higher High Mean Tide (HHMT) Elevation, 2023 (m)	Sea Level Rise (m)	100 yr. Storm Surge (m)	Subsidence (m)
9	High ifidence	2023	5.01	3.51	0.00	1.5	0.00
CP2. High		2053	5.15	3.51	0.11	1.5	0.03
<u>6</u>	con	2103	5.32	3.51	0.13	1.6	0.08
LO.	nce	2023	5.01	3.51	0.00	1.5	0.00
CP8.	Low fide	2053	5.79	3.51	0.45	1.8	0.03
~	con	2103	6.71	3.51	1.12	2.0	0.08

Table 5-3 Estimated Damage by Flood Depth

Scenario	Average Cost Impact per Event	Cumulative Percentage Weighted Cost	
2053 RCP8.5	\$11,808,836.43	\$3,735,790.34	
2103 RCP2.6	\$12,411,263.60	\$9,695,054.71	
2103 RCP8.5	\$14,531,007.34	\$11,929,957.03	

What Height Do we need?

Adaptation Pathways

Seawall Plan View

- Start at path to Fort Anne
- End south of Fortier Mills
- Permanent and temporary protection strategies
- Include shoreline renewal
- Plan for future adaptation

Seawall Section

Section () HOO

AMPHITHEATRE (WATER LOT)

Temporary Flood Protection

Adaptive Design

The Wharf

- Reduce cost by retaining existing
- Assess cost of piling vs. earthen embankment
- Allows anchoring top of piles, allowing shorter piles
- Aligns with shoreline renewal
- Cultural scenes on concrete panels

Seawall at the Amphitheatre

SECTION AT THE AMPHITHEATRE

Iem

Seawall at the Lighthouse

SECTION AT THE LIGHTHOUSE

Seawall at the Mad Hatter Patio

SECTION AT THE MAD HATTER PATIO

Seawall at King's Theatre

Seawall at King's Theatre

Concrete Seawall as Art

Seating and Guardrail Options

Intertidal Green Space and Living Seawall

Cost and Capital Financing

- Cost is becoming more certain with better return on investment
- Estimated at \$3.8 million dollars
- Municipal Contribution:
 - 30% = \$1.1 million
 - 60% = \$2.2 million

Table 5-3 Estimated Damage by Flood Depth

Scenario	Average Cost Impact per Event	Cumulative Percentage Weighted Cost	
2053 RCP8.5	\$11,808,836.43	\$3,735,790.34	
2103 RCP2.6	\$12,411,263.60	\$9,695,054.71	
2103 RCP8.5	\$14,531,007.34	\$11,929,957.03	

Cost and Capital Financing

Component	Current Estimate	10% Contribution	30% Contribution	60% Contribution
Seawall	\$3,800,000	\$380,000	\$1,100,000	\$2,200,000
Wharf Repair	\$2,700,000	\$270,000	\$ 810,000	\$1,620,000
Living Shoreline	\$ 800,000	\$ 80,000	\$ 240,000	\$ 480,000
Total	\$7,300,000	\$730,000	\$2,150,000	\$4,300,000

- Support for projects is a community decision
 - Consider alternatives
 - Cost of catastrophic flooding
 - Potential land use regulations
 - Time for emergency funds to arrive
- Weigh certain costs of adaptation vs possible costs of disasters
- Risk management considers the likelihood and consequence

Questions and Discussion

